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Abstract. Model simulations are widely used to understand, predict, and respond to environmental changes, but uncertainty 

in these models can hinder decision-making. The simulation of hydrological changes after a forest fire is a typical example 

where process-based models with uncertain parameters may inform consequential predictions of water availability. Different 

parameter sets can yield similarly realistic simulations during model calibration but generate divergent predictions of change, 15 

a problem known as “equifinality.” Despite longstanding recognition of the problems posed by equifinality, the implications 

for environmental disturbance simulations remain largely unconstrained. Here, we demonstrate how equifinality in water 

balance partitioning causes compounding uncertainty in hydrological changes attributable to a recent 1,540 km2 megafire in 

the Sierra Nevada mountains (California, USA). Different sets of calibrated parameters generate uncertain predictions of the 

four-year post-fire streamflow change that vary up to six-fold. However, controlling for nonstationary model error (e.g., a 20 

shift in the model bias after disturbance) can significantly (p < 0.01) reduce both equifinality and predictive uncertainty. 

Using a statistical metamodel to correct for bias shift after disturbance, we estimate a streamflow increase of 11% ±1% in the 

first four years after the fire, with an 18% ±4% increase during drought. Our metamodel framework for correcting 

nonstationarity reduces uncertainty in the post-fire streamflow change by 80% or 82% compared to the uncertainty of pure 

statistical or pure process-based model ensembles, respectively. As environmental disturbances continue to transform global 25 

landscapes, controlling for nonstationary biases can improve process-based models that are used to predict and respond to 

unprecedented hydrological changes. 
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1 Introduction 

Calibration – systematic adjustment of model parameters to improve simulation accuracy. 30 

Disturbance – an event that changes an environmental system from one state to another. 

Equifinality – the production of similar results for different reasons. 

Stationarity – the invariance of a statistical property across different time periods. 

 

Environmental disturbances (e.g., forest fires, other vegetation mortality events, floods, anthropogenic land cover 35 

conversion, etc.) can alter the structure and function of ecohydrological systems (Zehe and Sivapalan 2009, Ebel and Mirus 

2014, Buma 2015, Johnstone et al. 2016). Climate change and environmental disturbances introduce nonstationarity into the 

hydrological cycle, which is disrupting longstanding statistical approaches to water resource and risk management (Milly et 

al. 2008, 2015, Hirsch 2011, Salas et al. 2012, Yang et al. 2021). 

 40 

Pure statistical methods (e.g., regression models lacking an explicit physical foundation) can sometimes detect streamflow 

changes attributable to environmental disturbance by comparing measurements to a stationary model, which represents a no-

disturbance counterfactual. Statistical change attribution is generally applied across many years and numerous sites (e.g., 

Goeking and Tarboton 2022a, Hampton and Basu 2022, Williams et al. 2022) or in careful paired watershed studies to 

overcome climate/weather variability (e.g., Bart 2016, Manning et al. 2022, Johnson and Alila 2023, Kang and Sharma 45 

2024). However, in a single watershed with a short post-disturbance record, pure data-driven statistical approaches are 

inherently limited. Crucially, many water management decisions (e.g., reservoir release schedules) are made on a per-

watershed and per-year basis, so large-scale retrospective statistical assessments of disturbance effects may not provide 

actionable insights in any particular watershed. 

 50 

Spatially distributed process-based hydrological models, and related land surface or Earth system models, are a widely 

accepted tool that can overcome some limitations of statistical disturbance attribution (Fatichi et al. 2016, Pongratz et al. 

2018, Fisher and Koven 2020). Since interannual climate variability often obscures hydrological changes caused by 

disturbance, counterfactual model experiments using an undisturbed control are a cornerstone of ecohydrological disturbance 

attribution studies (e.g., Moreno et al. 2016, Saksa et al. 2017, Boisramé et al. 2019, Meili et al. 2024). Moreover, key 55 

process representations (e.g., flow routing and the snowpack energy balance) are expected to generalize beyond observed 

conditions, providing a basis for the prediction of hydrological responses to out-of-sample events including extreme storms 

(e.g., Huang and Swain 2022), decadal-scale climate change (e.g., Tague et al. 2009), and unprecedented “megafires” (e.g., 

Abolafia-Rosenzweig et al. 2024). 

 60 
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Since we lack landscape-scale observations of many important environmental properties, model parameters are often 

estimated through calibration. Equifinality arises during calibration when different parameter sets yield similar realizations 

of observable phenomena (Beven 1993, 2006, Ebel and Loague 2006). Recognizing that equifinality may preclude the 

possibility of picking a single “best” parameter set, some modelers advocate for using a “behavioral” ensemble based on 

subjective goodness-of-fit criteria in a generalized likelihood uncertainty estimation (GLUE) framework (Spear and 65 

Hornberger 1980, Beven and Binley 1992, Her and Chaubey 2015, Vrugt and Beven 2018). 

 

Equifinality implies process uncertainty (Grayson et al. 1992, Khatami et al. 2019). For example, total evapotranspiration 

(ET) is the sum of overstory and understory transpiration, interception loss, soil evaporation, snow sublimation, and other 

vapor fluxes; equifinal parameter sets may produce the same total ET with different partitioning between constituent fluxes 70 

(Franks et al. 1997, Birkel et al. 2024). Since each vapor flux component can respond differently to disturbance (Goeking 

and Tarboton 2020), we hypothesize that equifinal parameter sets may produce divergent predictions when the model is 

perturbed beyond the calibration space. 

 

We illustrate the hypothesized interaction of equifinality, disturbance, and bias (non)stationarity using a conceptual water 75 

balance model (Fig. 1). Example models of the pre-disturbance water balance each achieve the same mean pre-disturbance 

streamflow (Q), which is forced to approximately match Q observations through model calibration. Due to equifinality, there 

is residual uncertainty in the bias-corrected total precipitation (P) and the partitioning of ET between transpiration and 

interception from tree canopies (ETTree) and other vapor fluxes (ETOther, e.g., understory ET and soil evaporation). When a 

disturbance such as a fire reduces ETTree, the streamflow response is sensitive to the initial ETTree magnitude (and hence the 80 

potential ET reduction) as well as the degree to which ETOther responds to increased soil water availability. Over- or under-

estimation of the resultant streamflow change (ΔQ) manifests as a positive or negative “bias shift” after disturbance. The bias 

shift metric, as defined here, is a special discrete case of the more general concept of nonstationarity. In a system with 

changes that occur over longer time periods (in contrast to the discrete disturbance shown in Fig. 1), a different stationarity 

metric would be necessary to account for incremental changes. In the present study, zero bias shift after disturbance implies 85 

stationary error overall. 
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Figure 1: Conceptual model illustrating how equifinality in the modeled water balance may lead to uncertainty in the streamflow 

response to disturbance, and how we expect this to manifest in a measurable “bias shift” after a discrete disturbance. Numbers are 

indicative and not intended to represent actual disturbance magnitudes. 90 

 

We build on this conceptual example of the interaction between equifinality, disturbance, and nonstationarity (Fig. 1) to 

consider how the bias shift metric can help select parameter sets with enhanced physical fidelity and greater predictive 

confidence. The initial water balance of Model 1 is dominated by ETTree, leading to a large streamflow gain and a positive 

bias shift (tendency toward over-prediction of post-disturbance streamflow). Conversely, Model 2 has a large ETOther 95 

component, which compensates for the comparatively small reduction in ETTree, leading to a negligible streamflow gain and 

a negative bias shift (tendency toward under-prediction of post-disturbance streamflow). Finally, Model 3 has more 

precipitation than the other models and a more balanced combination of ETTree and ETOther, leading to a medium streamflow 

gain and stationary bias. In this case, Model 3 should be preferred due to its negligible bias shift, which would help achieve a 

better prediction of ΔET and ΔQ and also help constrain uncertainty in the underlying parameterization. 100 

 

The interaction of equifinality and disturbance is rarely addressed in process-based simulations. In contemporary studies, 

single parameter sets are sometimes used with or without calibration (e.g., Furniss et al. 2023, Abolafia-Rosenzweig et al. 

2024). When calibrated ensembles are used, uncertainty propagation is commonly limited to subsurface parameters and 

meteorological biases (e.g., Shields and Tague 2012, Saksa et al. 2017, Boisramé et al. 2019). We expect that latent 105 

uncertainty in vegetation parameters may contribute an unconstrained source of uncertainty in studies of ecohydrological 
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disturbance that do not account for vegetation parameter equifinality. Conversely, model equifinality can be reduced by 

leveraging additional types of information beyond traditional streamflow calibration metrics (Kelleher et al. 2017). One 

unexplored approach to equifinality reduction is evaluating the stationarity of model biases after environmental disturbance, 

which we consider here. 110 

 

In this study, we leverage a large wildfire as a “natural experiment” to test the hypothesis that quantifying stationarity across 

pre- and post-disturbance periods can reduce equifinality and improve the predictive confidence of a process-based 

hydrological model. Specifically, we apply the Distributed Hydrology Soil Vegetation Model (DHSVM, Wigmosta et al. 

1994) to simulate streamflow changes attributable to the Creek Fire in the Sierra Nevada mountains (California, USA), 115 

which burned 56% of the forested area in our 4,244 km2 study watershed (Stephens et al. 2022, Ayars et al. 2023). We 

expect that this drastic landscape-scale environmental disturbance should have a clear impact on regional-scale water fluxes, 

providing an opportunity to test whether model process representations are robust to disturbance. We leverage a multi-

objective calibration of vegetation, snow, subsurface, and meteorological bias-correction parameters to address two research 

questions: 120 

(1) How does calibration equifinality impact process-based simulations of the hydrological response to a megafire? 

(2) Can we reduce equifinality and uncertainty by testing the model’s representation of hydrological change? 
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2 Methods 

2.1 Study Area and Data 125 

Our study watershed encompasses the Upper San Joaquin River Basin above Millerton Lake, a total of 4,244 km2 with an 

elevation range of 100 to 4,200 m (Fig. 2A). The 2020 Creek Fire burnt 1,540 km2 of mixed conifer and scrub forest, 

including 1,481 km2 within the study watershed (56% of the forested watershed area). Landsat-based data from Monitoring 

Trends in Burn Severity (MTBS, Fig. 2B) indicate that 16% of the Creek Fire exhibited high burn severity and 30% 

exhibited moderate severity (Eidenshink et al. 2007, MTBS Project 2022). However, using a longer time period for pre- and 130 

post-fire imagery, Stephens et al. (2022) estimate 41% high severity and 35% moderate severity, illustrating the proliferation 

of uncertainty in disturbance assessments. 

 

 

Figure 2: Maps of the study watershed: (A) elevation and watershed location in the U.S. State of California, (B) 2020 Creek Fire 135 
burn severity from MTBS, (C) pre-fire and (D) post-fire forest canopy cover from RCMAP. Tick marks indicate 10 km intervals 

in UTM zone 11N. 
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We represent fire disturbance in DHSVM by adjusting maps of vegetation properties. All maps are projected to our selected 

DHSVM resolution of 90 m. The Landsat-based RCMAP data provide yearly fractional cover estimates for trees and 140 

shrub/herbaceous vegetation at 30 m resolution (Rigge et al. 2021a,b). We use the 2011-era RCMAP data as a pre-fire 

baseline and the 2021-era RCMAP data to capture the effects of the 2020 Creek Fire (Fig. 2C-D). We also update the 

vegetation maps in 2013, 2014, and 2018 to reflect smaller fires in those years. The DHSVM vegetation maps are updated on 

October 1st in the year of a fire, i.e., about one month after the September 2020 Creek Fire ignition. Vegetation is classified 

based on the species (when available) or functional type (e.g., mixed conifer forest) using Landfire data (2022), and abiotic 145 

land surface classes are derived from NLCD (Dewitz and U.S. Geological Survey 2019). Landfire and RCMAP provide tree 

and shrub height data, respectively. Tree leaf area index (LAI) is estimated empirically from fractional cover following 

Pomeroy et al. (2002), which is reproduced as Eq. (1) of Goeking and Tarboton (2022b). Vegetation transpiration is 

calculated by DHSVM based on the vegetation type and local weather, soil moisture, and light in each grid cell (Wigmosta et 

al. 1994). Baseline values of minimum stomatal resistance are estimated from species-level field studies as detailed in the 150 

Supporting Information of Boardman et al. (2025). Fractional cover, LAI, and stomatal resistance are refined by calibration 

relative to baseline (Sect. 2.2). 

 

Spatial maps and parameter values for DHSVM are collated from a wide range of literature and field studies, as detailed in 

Boardman et al. (2025) and Boardman (2023). We briefly summarize key setup procedures here. Subsurface properties are 155 

estimated by disaggregating regional soil survey databases (Gupta et al. 2022, Soil Survey Staff 2022) using Random Forest 

models trained on topographic metrics (Breiman et al. 2002). In the updated version of DHSVM used here, streamflow in 

channels is bidirectionally coupled to the groundwater level in each grid cell, and the maximum network extent is derived 

from the National Hydrography Dataset (U.S. Geological Survey 2019) with channel geometry from regional regressions 

(Bieger et al. 2015). Meteorological data from gridMET (Abatzoglou 2013) are disaggregated to a 3-hour timestep using 160 

MetSim (Bennett et al. 2020). Modeled snowfall is distributed in proportion to the pixel-wise maximum observed snow 

water equivalent (SWE) pattern derived from Airborne Snow Observatory (ASO) data in the study watershed (Painter et al. 

2016), which implicitly accounts for snow transport (Vögeli et al. 2016). Regional snow/rain partitioning parameters are 

adopted from Sun et al. (2019). 

 165 

2.2 Model Calibration 

We calibrate 14 sensitive and uncertain parameters in DHSVM that control aspects of the meteorology, vegetation, 

subsurface, and snowpack dynamics (Table 1). While most of these parameters are widely recognized as suitable for 

calibration (Cuo et al. 2011, Du et al. 2014), precipitation and temperature biases are less frequently included in the 

calibration of distributed process-based models despite considerable uncertainty in gridded meteorological data (Henn et al. 170 

2018). We expect that interactions between meteorological uncertainty and parameter equifinality may contribute to the 
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overall uncertainty of disturbance simulations (Fig. 1), but this uncertainty would remain hidden if meteorological biases 

were assumed zero. 

 

Category Parameter Range Primary Process Controls 

Meteorology 

Precipitation Bias ±25% 
Net water balance input, interannual variability in 

water yield 

Temperature Bias ±4 °C 
Snow/rain partitioning, potential evapotranspiration 

(PET) 

Temperature Lapse 

Rate 
-8 to -2 °C/km Spatial distribution of snow and PET 

Vegetation 

Tree Fractional 

Cover 

50% to 200% of 

baseline, each cell ≤ 

100% cover 

Canopy interception and transpiration, understory and 

snowpack shading 

Tree Leaf Area 

Index (LAI) 

50% to 200% of 

baseline 
Canopy interception capacity, overstory transpiration 

Stomatal 

Resistance 

50% to 200% of 

baseline 
Overstory and understory transpiration 

Subsurface 

Soil Depth 1 to 10 m 
Lateral transmissivity, root zone groundwater access, 

storage capacity 

Hydraulic 

Conductivity 
10-5 to 10-2 m/s 

Lateral transmissivity, vertical recharge rate (by 

anisotropy ratio), surface/subsurface flow partitioning 

Exponential 

Decrease in 

Conductivity 

10-3 to 100 [unitless] 
Lateral transmissivity, vertical conductivity profile, 

baseflow recession, water table depth 

Porosity 0.3 to 0.6 [fractional] 
Dynamic storage range, water table response to 

infiltration 

Field Capacity 0.1 to 0.4 [fractional] 
Dynamic storage range, soil water retention, plant 

available water 

Snow 

Albedo Decay 

(Accumulation) 
0.7 to 0.99 Snowpack energy balance, maximum accumulation 

Albedo Decay 

(Melt Season) 

-0.3 to 0.0 relative to 

accumulation 

Snowpack energy balance, snowmelt rate, snow cover 

duration 

Albedo Reset 

Snowfall Scale 
10-4 to 100 m SWE 

Albedo increase associated with new snowfall of a 

given depth 
Table 1: Prior ranges and process controls of DHSVM parameters calibrated in this study. All vegetation and subsurface 175 
parameters listed here are defined by spatially variable maps, and calibration ranges determine the area-average value around 

which the pattern is rescaled. 

 

Multiple parameters combine to control simulated processes. For example, area-average LAI (related to total interception 

loss) is the product of tree-scale LAI with grid-scale fractional cover. Tree transpiration is determined by fractional cover, 180 

LAI, stomatal resistance, available soil water (related to subsurface parameters), and other factors. Lateral transmissivity in 

the saturated subsurface is controlled by three parameters: soil depth, surface hydraulic conductivity, and the exponential 

decrease in conductivity with depth. Cross-compensation among interrelated parameters thus contributes to equifinality. 

Within our 14-dimensional calibration space, 23 parameter pairs have correlations that are significant at p < 0.05 
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(Supplemental Fig. S1). Furthermore, perturbing one aspect of the model can lead to cascading effects due to the coupling of 185 

ecohydrological processes and spatial water connectivity in the model. For example, lateral hydraulic conductivity is coupled 

to vertical conductivity by anisotropy ratios dependent on the soil textural classification (Fan and Miguez-Macho 2011), so 

calibrating lateral conductivity also influences groundwater recharge rates from losing stream reaches, which in turn can 

affect soil evaporation and transpiration from riparian trees. Spatial heterogeneity in modeled soil and vegetation properties 

(Sect. 2.1) further complicates all of these interactions, e.g., different parts of the landscape are relatively more sensitive to 190 

calibration of different parameters depending on the baseline map patterns. 

 

Given the complexity of expected interactions, we define seven objective functions to constrain parameters based on 

different hydrological signatures (Table 2). Three objectives are based on daily streamflow, which is reconstructed at 

Millerton Lake (Fig. 2) to remove the effects of upstream reservoirs and diversions (California Department of Water 195 

Resources 2024). Two objective functions similarly target annual percent error in the annual water yield and the April-July 

water yield, which is a well-established benchmark for snowmelt runoff modeling in the Sierra Nevada (Pagano et al. 2004). 

Two objective functions are based on the eight-year (2017-2024), 30-survey database of ASO SWE maps in the study area, 

targeting both the spatial distribution at the 90 m grid scale and the percent error in total volume across surveys. Hydrograph 

and water yield objectives are calculated for water years 2015-2024, which includes six years before and four years after the 200 

Creek Fire. By calibrating across this disturbance (vegetation maps updated during calibration), we automatically reject 

parameter sets that fail to provide reasonably accurate estimates of both pre- and post-fire streamflow. 

 

Category 
Objective 

Function 

Best 

Value 

Worst 

Value 
Target Hydrological Signatures 

Daily 

Streamflow 

(2015-2024) 

NSE 0.89 0.80 
Hydrograph shape (high flows), rainfall-runoff response, 

snow/rain partitioning, peak flow and recession timing 

Log-Scaled NSE 0.85 0.80 
Hydrograph shape (low flows), baseflow recession 

characteristics, multi-year storage/deficit effects 

>95th-Percentile 

RMSE 
26 m3/s 74 m3/s 

High flow magnitude, shape of flow duration curve 

independent of timing 

Water Yield 

(2015-2024) 

Yearly MAPE 4% 9% 
Bulk water balance, interannual variability across wet and 

dry years 

April-July MAPE 7% 10% 
Interannual variability in snowmelt runoff efficiency and 

timing 

Snow Maps 

(30 ASO 

Surveys, 

2017-2024) 

Pixel-Wise SWE 

RMSE 
0.23 m 0.25 m 

Spatial distribution of snow accumulation and ablation, 

absolute magnitude of SWE in different years 

Total SWE 

Volume MAPE 
18% 32% 

Evolution of snowpack volume between surveys, 

interannual variability 
Table 2: Calibration objective functions used in this study with descriptions of the primary hydrological signatures constrained by 

each objective. The best (worst) value given here is the lowest (highest) error achieved by any of the Pareto-efficient parameter sets 205 
in our calibrated 30-member behavioral ensemble. NSE = Nash Sutcliffe Efficiency (identical to R2 for statistical models), RMSE = 

root mean square error, MAPE = mean absolute percent error. 
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To efficiently sample behavioral parameter sets from the 14-dimensonal space of potential interactions, we apply a multi-

objective Bayesian optimization scheme (Jones et al. 1998). After an initial Latin hypercube sample of 320 parameter sets 210 

(Dupuy et al. 2015), we perform parallel particle swarm optimization (Kennedy and Eberhart 1995, Zambrano-Bigiarini et 

al. 2013) using the expected hypervolume indicator (Emmerich et al. 2011, Binois and Picheny 2019) to sample promising 

parameter sets based on Gaussian Process surrogate models of the objective function response surfaces (Roustant et al. 

2012). After six optimization generations, we have tested a total of 600 parameter sets (n.b. this requires ~950 days of CPU 

time on 2.5 GHz servers, and the elapsed wall-clock time is several weeks since multiple parameter sets are tested in 215 

parallel). Of all the tested parameter sets, 48 qualify as “behavioral” by satisfying the following subjective criteria: daily 

NSE > 0.8, daily log NSE > 0.8, yearly MAPE < 10%, April-July MAPE < 10%, and Pareto-efficient across all objectives. 

Some parameter samples are similar, so for efficiency we further select 30 diverse samples by iteratively choosing the 

behavioral parameter set with the maximum mean parameter separation from previously selected samples. These 30 

parameter sets define the behavioral DHSVM ensemble referenced hereafter. We note that our conclusions are robust to 220 

random sub-selection of fewer models, as long as at least ~10 parameter sets are used (Supplemental Fig. S2). 

 

2.3 Disturbance Simulations 

We investigate the ecohydrological effects of the Creek Fire by comparing model simulations using dynamic and static 

vegetation maps to quantify the fire effect relative to a no-fire control scenario. For each of the 30 DHSVM parameter sets, 225 

we simulate streamflow for the past 20 years (water years 2005-2024) with either static 2011-era vegetation maps or 

dynamic vegetation maps updated in 2013, 2014, 2018, and 2020. The 2020 Creek Fire accounts for most of the vegetation 

disturbance in the study area, with a 42% reduction in watershed-average RCMAP tree fractional cover compared to 2-3% 

reductions associated with the 2013, 2014, and 2018 fires. Differences between fire-aware (dynamic vegetation) and no-fire 

control (static vegetation) simulations define the modeled disturbance effect. In addition to comparing daily streamflow, we 230 

also compare annual water yield and ET fluxes between fire-aware and no-fire control scenarios. 

 

2.4 Detecting and Correcting Nonstationarity 

We calculate a “bias shift” metric by comparing observed streamflow with modeled streamflow from the fire-aware 

(dynamic vegetation) simulations. The 30-member behavioral DHSVM ensemble has a reasonably small mean streamflow 235 

bias for the overall 2005-2024 evaluation period (interquartile range among parameter sets of ±2%). However, some 

parameter sets have different mean streamflow biases on pre- and post-fire periods, congruent with our conceptual model in 

Fig. 1. We theorize that over- or under-estimation of the disturbance effect on streamflow may result in a matching positive 

or negative bias shift after disturbance, defined as the difference in mean streamflow bias between post-fire and pre-fire 

periods: 240 
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𝐵𝑖𝑎𝑠 𝑆ℎ𝑖𝑓𝑡 = (𝑄𝑀𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑄𝑀𝑒𝑎𝑠.

̅̅ ̅̅ ̅̅ ̅̅ )𝑃𝑜𝑠𝑡−𝐹𝑖𝑟𝑒 − (𝑄𝑀𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑄𝑀𝑒𝑎𝑠.

̅̅ ̅̅ ̅̅ ̅̅ )𝑃𝑟𝑒−𝐹𝑖𝑟𝑒 (1) 

We correct for the bias shift of different parameter sets by developing a “metamodel,” i.e., a statistical model trained on 

DHSVM outputs. The bias shift metric, Eq. (1), is averaged across multiple years, whereas we expect that each individual 

year may have a larger or smaller streamflow response due to variable interactions between climate and vegetation. In the 

case that the streamflow response is purely energy-limited (P >> ET), we would expect the same post-fire streamflow gain in 245 

all years; conversely, in a water-limited case (P closer to ET magnitude) we would expect a 1:1 scaling between annual 

precipitation and the post-fire streamflow gain. Between these two endmember scenarios, we expect that the magnitude of 

the simulated streamflow change in any particular year may be offset and/or fractionally re-scaled relative to the mean multi-

year streamflow change. Thus, we posit a linear relationship between the multi-year bias shift and the simulated streamflow 

response to fire in any particular year, ΔQFire. 250 

 

In a Bayesian statistical framework, we treat each DHSVM parameter set as an independent realization of the possible post-

fire response, with a stochastic error term describing scatter in the hypothesized linear relationship between bias shift and 

ΔQFire. We define the metamodel using a normal distribution with mean determined by the linear bias shift vs. ΔQFire 

relationship and uncertainty defined by the sample standard deviation σ, which can be expressed in Bayesian sampling 255 

notation as: 

𝛥𝑄𝐹𝑖𝑟𝑒  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑐0 + 𝑐1 ∗ 𝐵𝑖𝑎𝑠 𝑆ℎ𝑖𝑓𝑡, 𝜎) (2) 

To estimate the values of c0, c1, and σ (with quantified uncertainty in all three parameters), we generate 1,000 Bayesian 

samples using the Hamiltonian Monte Carlo algorithm with two chains (500 samples per chain) after 10,000 warmup 

iterations (Stan Development Team 2023). The metamodel is fit using all 30 pairs of bias shift and ΔQFire values calculated 260 

for each parameter set in the behavioral DHSVM ensemble, with c0, c1, and σ re-fit for each of the four post-fire years. We 

subsequently generate a conditional prediction of ΔQFire in each year by setting the bias shift equal to zero in Eq. (2), which 

yields a normal distribution with mean c0 and standard deviation σ. Unlike simple least-squares linear regression, uncertainty 

in the metamodel parameters (c0, c1, and σ) is propagated into our conditional predictions through the Bayesian sampling 

routine, which considers 1,000 different combinations of plausible c0, c1, and σ values. Sampling the posterior distribution of 265 

Eq. (2) with bias shift set to zero yields a conditional distribution describing the expected post-fire streamflow change and 

uncertainty of a hypothetical DHSVM simulation with zero bias shift. 

 

2.5 Empirical Regression Model 

To compare statistical and process-based approaches to ecohydrological disturbance attribution, we also apply an empirical 270 

annual water balance model using Bayesian multiple linear regression. We posit a simple four-parameter lumped empirical 

model that estimates the annual runoff efficiency (Q / P) as a linear function of annual precipitation (P), the prior year’s 

streamflow (QLastYear) to account for multi-year storage or deficit effects, and the aridity index calculated from annual 
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potential evapotranspiration (PET / P). The model structure is adapted from a similar regression approach applied to analyze 

seasonal water supply in adjacent watersheds (Boardman et al. 2024). We assume that each year’s actual runoff efficiency is 275 

randomly sampled from a normal distribution with standard deviation σ and mean defined by the linear model, expressed 

analogously to Eq. (2) in Bayesian sampling notation: 

𝑄

𝑃
 ~ 𝑛𝑜𝑟𝑚𝑎𝑙 (𝑐0 + 𝑐1 ∗ 𝑃 + 𝑐2 ∗ 𝑄𝐿𝑎𝑠𝑡𝑌𝑒𝑎𝑟 + 𝑐3 ∗

𝑃𝐸𝑇

𝑃
, 𝜎) (3) 

We constrain the empirical model using pre-fire data and compare its post-fire predictions with measured post-fire 

streamflow. Meteorological data required for Eq. (3) are aggregated from the same gridMET data used for DHSVM 280 

(Abatzoglou 2013) over water years 1980-2020. As for Eq. (2), we generate 1,000 Bayesian samples of the empirical model 

parameters (c0, c1, c2, and σ) using Hamiltonian Monte Carlo (Stan Development Team 2023). The empirical model achieves 

R2 = 0.91 for annual variations in runoff efficiency across the 41-year fitting period. By sampling the model’s posterior 

predictive distribution using meteorological data from 2021-2024, we generate 1,000 counterfactual estimates of annual 

streamflow in each of the post-fire years. The difference between measured post-fire streamflow and predicted streamflow 285 

from the stationary statistical model provides an estimate of the streamflow change attributable to disturbance. 
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3 Results 

The behavioral ensemble of 30 calibrated DHSVM parameter sets all satisfactorily reproduce observed streamflow 290 

hydrographs (Table 2, Fig. 3). Daily NSE values for the 2015-2024 calibration period vary between 0.80 and 0.89 (log NSE 

0.80-0.85), with similar statistics on the 2005-2014 validation period (NSE 0.76-0.88, log NSE 0.80-0.89). All behavioral 

parameter sets also achieve satisfactory NSE (0.80-0.87) and log-scale NSE (0.76-0.84) considering just the four years after 

the Creek Fire. The mean post-fire bias varies by -9% to +6%. Comparing fire-aware and no-fire control scenarios, the 

behavioral ensemble indicates a bulk streamflow increase of +2 to +17% after the Creek Fire (median +12%). DHSVM also 295 

indicates a shift towards earlier snowmelt runoff after the Creek Fire, particularly in the snowy 2023 water year. 

 

 

Figure 3: Modeled and measured daily streamflow hydrographs (top panel) and streamflow differences between fire-aware and 

no-fire control simulations (bottom panel). Both panels show results from 30 calibrated “behavioral” parameter sets (Sect. 2.2). 300 
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Uncertainty in the streamflow response to disturbance is large relative to the size of the effect, even after a megafire. The 

difference in total post-fire streamflow volume between fire-aware and no-fire control scenarios has a coefficient of variation 

of 41%. Some parameter sets predict up to a 650% larger streamflow response than other parameter sets (inter-model range 

of +13 to +97 mm/yr). Relative uncertainty is higher in dry years, with the simulated streamflow response in 2021 varying 305 

between +3 mm/yr and +47 mm/yr across different parameter sets (1,400% range). The predicted streamflow change after 

the Creek Fire is on the same order of magnitude as stochastic error in the annual water balance (Supplemental Fig. S3), 

which intuitively explains why the disturbance response remains uncertain despite direct calibration of pre- and post-fire 

streamflow (Fig. 3). 

 310 

Uncertainty in the post-fire streamflow response is linked to equifinality in modeled water balance fluxes (Figs. 1, 4). To 

qualify as “behavioral,” parameter sets must satisfactorily estimate the annual water balance (MAPE < 10%), but the model 

can achieve this in different ways. Some parameter combinations suggest that transpiration and interception loss from 

vegetation accounts for up to 95% of total pre-fire ET, while others suggest a vegetation contribution as low as 77%, with 

the balance contributed by evaporation from abiotic surfaces (stream channels and soil, including rock above treeline). 315 

Relatively dense initial forests (high area-average LAI) are associated with large decreases in post-fire transpiration and 

interception loss (Pearson r = -0.92, p < 0.01). Low transmissivity is associated with increases in post-fire soil evaporation 

and channel evaporation (r = -0.99, p < 0.01, both variables log-transformed). 
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 320 

Figure 4: Difference in ET fluxes between fire-aware and no-fire control simulations visualized relative to model parameter 

uncertainty. The area-average leaf area index (LAI) is aggregated within the pre-fire forested area from maps of tree-scale LAI 

and grid-scale fractional cover, and the area-average transmissivity is aggregated from maps of soil depth, conductivity, and 

exponential decrease using the DHSVM transmissivity equations (Table 1). Trend lines indicate the least-squares fit and 90% 

confidence interval of the best-fit linear estimator. 325 

 

Compensating errors in equifinal parameter sets can produce compounding discrepancies after disturbance. Not only do 

some parameter sets indicate much larger changes in individual fluxes, those with the smallest reductions in vegetation ET 

also exhibit the largest fractional compensation (up to 76%) from increased abiotic evaporation (r = 0.71, 0.01). A similar 

compensation between modeled overstory and understory ET components is illustrated by Boardman et al. (2025). Low 330 

calibrated transmissivity implies slower groundwater recharge and shallower flowpaths, contributing to higher soil 

evaporation, which compensates for low vegetation ET. These parameter sets are primed for large increases in evaporation 

when soil moisture increases in de-forested areas after fire. Consequentially, there is a negative correlation (r = -0.93, p < 

0.01) between the fraction of pre-fire ET contributed by abiotic evaporation and the magnitude of the post-fire net ET 

reduction. 335 

 

Evaluating the model bias shift (Eq. 1) can help escape this morass of uncertainty. Across the 30-member behavioral 

ensemble, there is a strong correlation (r = 0.96-0.99 depending on year, p < 0.01) between the mean streamflow bias shift 

after disturbance and the annual streamflow change attributable to fire (Fig. 5). Lines in Fig. 5 correspond to Eq. (2), and the 

horizontal axis is defined by Eq. (1). Bayesian sampling of a linear model conditioned on zero bias shift yields an estimate of 340 
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the uncertainty in the vertical intercept (Sect. 2.4), which is the predicted streamflow change of models with stationary bias. 

Comparing the annual streamflow errors of models with positive or negative bias shift (Supplemental Fig. S3), we note that 

the positive-shift models tend to have more-positive errors on the pre-fire period compared to negative-shift models, but this 

stratification reverses after the Creek Fire. This reversal of model over- and under-prediction after disturbance is consistent 

with our conceptual model in Fig. 1. Additionally, as shown by the shape-size in Fig. 5, the models with the largest over-345 

prediction have anomalously high overstory LAI, and vice versa, which is similarly consistent with the conceptualization of 

ETTree and ETOther equifinality in Fig. 1. 

 

Figure 5: Annual post-fire streamflow change visualized relative to the mean bias shift after disturbance for all 30 parameter sets. 

Parameter sets with a shift towards overestimation predict a relatively large streamflow response to disturbance, and vice versa. 350 
Parameter sets with near-stationary bias are assumed to give the most accurate estimate of changes due to disturbance. Trend 

lines indicate the least-squares fit and 90% confidence interval of the best-fit linear estimator, distinct from the analogous 

Bayesian regression in Eq. (2), which also propagates parameter uncertainty. 

 

Eight parameter sets result in near-stationary bias (shift less than ±10 mm/yr). This eight-member “stationary sub-ensemble” 355 

demonstrates how considering bias shift after disturbance can reduce equifinality. Compared to 104 alternative sub-
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ensembles of eight parameter sets each randomly selected from the 30-member ensemble, the stationary sub-ensemble has 

significantly reduced uncertainty in LAI (p < 0.01) and transmissivity (p < 0.02), calculated from the cumulative distribution 

function for the fractional uncertainty reduction of all 104 sub-ensembles. This uncertainty reduction associated with the 

stationary sub-ensemble is 72% larger for LAI and 285% larger for log-transformed transmissivity compared to the median 360 

uncertainty reduction of same-sized sub-ensembles selected randomly.  The stationary sub-ensemble has mean 2011-era LAI 

between 1.9-2.8 m2/m2, which is 74% less uncertainty compared to the full behavioral ensemble range of 0.9-4.1 m2/m2 (Fig. 

5). Analogously, the stationary sub-ensemble has 50% less uncertainty in log-transformed mean transmissivity despite order-

of-magnitude residual uncertainty (108-1378 m2/d). Meteorological uncertainty remains mostly unchanged in the stationary 

sub-ensemble, with 3.7 °C and 15% uncertainties in temperature and precipitation biases, respectively, compared to 4.4 °C 365 

and 15% for the behavioral ensemble (no significant change relative to random sub-ensemble selection). This leads to similar 

uncertainty in the stationary sub-ensemble’s post-fire evaporative index (ET / P) compared to the full ensemble (25-34% vs. 

24-39% respectively). Among all 14 calibrated parameters (Table 1), only the melt-season albedo decay rate has a 

statistically significant difference in the mean (p < 0.05, Welch two-sample t-test) between the stationary sub-ensemble and 

the full 30-member ensemble. Instead, most of the equifinality reduction arises from shrinking the uncertainty of the 370 

parameter distributions rather than changing their mean (Supplemental Fig. S4) and/or from constraining multi-dimensional 

parameter interactions (Supplemental Fig. S1). 

 

Compared to the full behavioral ensemble, the stationary sub-ensemble has slightly sub-optimal hydrograph fit (NSE 0.80-

0.85 vs. 0.89 max), but generally better SWE volume error (MAPE of 18-27% across 30 ASO surveys vs. 32% for the 375 

highest-NSE parameter set). The stationary sub-ensemble has statistically lower (worse) mean NSE values compared to the 

30-member ensemble (p < 0.05) and approaches the threshold for significantly lower (better) mean SWE volume percent 

error (p = 0.055). The >95th-percentile peak flow RMSE is also significantly worse (p < 0.05) for the stationary sub-

ensemble. Differences in log-scale NSE and annual or April-July water yield error are not statistically significant. The 

improvement in snow skill despite a slight worsening of streamflow skill (Supplemental Fig. S5) may arise from overfitting 380 

during calibration, which leads to a tradeoff between enhanced model physical fidelity (represented by the near-zero bias 

shift and better snow performance of the stationary sub-ensemble) and minor degradation in the streamflow performance 

metrics. 

 

Empirical regression and process-based simulations both suggest an increase in streamflow after the Creek Fire, albeit with 385 

different uncertainty ranges (Fig. 6). An empirical model (Eq. 3) fit to pre-fire data predicts relatively less post-fire 

streamflow than observed, implying a total streamflow increase of +12% with a 90% credible interval of +5 to +18% 

assuming that each year’s error distribution is independent. (The 90% credible interval represents the 5 th-95th percentiles.) 

Although the four-year total streamflow increase is significant at p < 0.01, for individual post-fire years we cannot reject the 

null hypothesis (no change after disturbance) at the p < 0.01 level, and we cannot even reject the no-change hypothesis at the 390 
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p < 0.1 level in 2021 or 2024. Compared to the pure statistical model based on the same meteorological data, our process-

based modeling approach yields remarkably similar uncertainty. All 30 behavioral DHSVM parameter sets indicate at least 

some streamflow increase in each post-fire year, with a similar mean increase of +12% and a marginally wider 90% range of 

+3 to +17% across the ensemble. Although the 90% uncertainty ranges are similar between DHSVM and the empirical 

regression, all of the DHSVM parameter sets show at least some increase. Additionally, within individual years, the 395 

DHSVM uncertainty can be much lower (e.g., in 2023, the DHSVM 90% range is +2 to +11%, while the empirical 

regression 90% credible interval is +3% to +23%). The uncertainty of the empirical model benefits from considering all four 

years simultaneously, since the empirical model assumes that each year’s fire effect is independent, while different DHSVM 

parameter sets are systematically biased high or low across all post-fire years. 

 400 

 

Figure 6: Uncertainty distributions for the annual post-fire streamflow change relative to a control scenario with no fire. 

Empirical regression results are estimated by comparing post-fire measurements with 1,000 random samples of a pre-fire multi-

linear regression model (Eq. 3). The DHSVM ensemble represents the difference between fire-aware and no-fire control 

simulations using 30 different calibrated parameter sets. The conditional metamodel predicts the DHSVM response subject to the 405 
requirement of stationary bias using 1,000 random samples of the Bayesian regression in Eq. (2). (Note that the vertical axis is 

truncated at +200 mm/yr for increased visibility of most results.) 
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Compared to pure statistical or pure process-based approaches, a statistical metamodel trained on DHSVM results and 

conditioned on bias stationarity can drastically reduce uncertainty. Using 1,000 random samples of the metamodel (Eq. 2), 410 

we find a +11% increase in total post-fire streamflow with a 90% credible interval of +10 to +12%. The mean streamflow 

response is 14 standard deviations above zero, confidently rejecting the no-change hypothesis. Moreover, interannual 

variability in the conditional streamflow response is separable between all pairs of years at the p < 0.01 level. In contrast, 

raw DHSVM simulations of the streamflow response in 2022, 2023, and 2024 are not mutually separable at the p < 0.05 

level. Comparing 90% credible intervals, the conditional approach reduces uncertainty in the total post-fire streamflow 415 

change by 80% compared to the empirical regression and 82% compared to the DHSVM ensemble. Of course we cannot 

know precisely what the true streamflow would have been without a fire, so some uncertainty must always remain, but our 

metamodel results suggest that we can substantially reduce this uncertainty by fusing process-based and statistical 

approaches. 

4 Discussion 420 

Hydrological models must include forest fires and other environmental disturbances to provide robust predictions for water 

resource management, risk assessment, and operational planning. In 2021, the first year after the Creek Fire, our hybrid 

modeling approach estimates that the additional streamflow attributable to forest disturbance provided 0.11 ±0.03 km3 

(92,000 ac-ft.) of extra water to Millerton Lake (a major regional reservoir, Fig. 2), which is 18% ±4% of the total water 

yield in a year where drought conditions caused curtailment of downstream water rights (California DWR 2021). In the wet 425 

2023 water year, extra streamflow attributable to the fire totaled ~0.38 ±0.04 km3 (310,000 ac-ft., 7% of total water yield), 

equivalent to an extra 60% ±7% of the reservoir storage capacity in a year with widespread flooding (California DWR 2023). 

(All uncertainty ranges indicate the 90% credible interval.) These examples illustrate the potential for major forest 

disturbances like forest megafires to enhance water resources and/or exacerbate water risks (e.g., Boardman et al., 2025). 

Accurately representing disturbance and accounting for other sources of nonstationarity should be a priority of 430 

ecohydrological modeling. 

 

Our results suggest that equifinality demands more thoughtful consideration in hydrological model-based studies of 

disturbance. At the same time, studies investigating disturbance have a unique and underutilized opportunity to reduce model 

equifinality. Much of the spread in the DHSVM ensemble (Fig. 6) could be eliminated by reducing the number of calibrated 435 

parameters or narrowing their prior range (Table 1). However, in typical landscape-scale simulations, we do not know the 

“correct” parameter values. For example, there is considerable uncertainty in vegetation properties derived from satellite 

imagery (Garrigues et al. 2008, Tang et al. 2019) or extrapolated from sparse field data (Meyer et al. 2016). Moreover, in 

modeling applications, “effective” parameters may subsume additional sources of structural or data uncertainty (Dolman and 
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Blyth 1997, Vázquez 2003, Were et al. 2007), and some quasi-empirical parameters (e.g., grid-scale hydraulic conductivity) 440 

do not have single “correct” values (Beven 1993). Uncertainty in vegetation properties like LAI can produce significantly 

different streamflow predictions (e.g., Bart et al. 2016 and Fig. 5 of this study), and latent uncertainty could cause systematic 

biases (Fig. 4). Furthermore, even if vegetation properties could be tightly constrained, introducing parameter variability into 

model experiments can reveal compensating ecohydrological processes (Figs. 1, 4), counterintuitively leading to higher 

confidence in the statistical metamodel by providing datapoints for regression in Eq. (2). Nevertheless, reducing model 445 

parameter uncertainty is generally desirable when justified, and our results show that a sub-ensemble of parameter sets with 

near-stationary bias after disturbance can significantly reduce uncertainty in LAI (p < 0.01) and saturated transmissivity (p < 

0.02). 

 

Using process-based models for post-disturbance predictions based on traditional streamflow calibration metrics can be 450 

dangerously misleading. Describing model performance with simple goodness-of-fit metrics (e.g., NSE) is problematic in 

general due to sampling uncertainty and other issues (Clark et al. 2021), but these metrics remain ubiquitous in modeling 

studies (including this study) due to their ease of application and simplicity of interpretation. Although these metrics are 

useful for loosely identifying an initial ensemble of behavioral models, our results provide a clear example of the pitfalls in 

blindly trusting NSE-based (or similar) calibration strategies. In particular, the four models with the highest daily NSE (0.88-455 

0.89) have anomalously small disturbance effects, and the parameter set with the absolute highest NSE underestimates the 

post-fire streamflow change by 79% relative to the metamodel mean (Supplemental Fig. S6). These outlying parameter sets 

are probably compensating for unknown deficiencies in the model structure and/or forcing data, leading the model to get a 

slightly higher NSE for what are apparently the wrong reasons. These undesirable and yet numerically optimal solutions are 

endemic to high-dimensional optimization problems, an issue known as “reward hacking” (Amodei et al. 2016). Although 460 

log-transformed NSE appears less vulnerable to reward hacking (Supplemental Fig. S6), the parameter set with the absolute 

highest log NSE still underestimates the metamodel-based mean streamflow change by 58%. It is noteworthy that our 

ultimate model evaluation metric (bias shift, Fig. 5) is not included in the calibration. If this metric were directly calibrated, 

it might be susceptible to reward hacking, leading to unreliable inference in Eq. (2). 

 465 

With care, process-based models can remain powerful tools for hydrological investigation. Despite a recent focus on 

machine learning approaches to hydrological prediction (Ardabili et al. 2020, Xu and Liang 2021), purely empirical methods 

are limited by the amount of available data, the ability to assign clear process attribution, and the potentially ambiguous 

interpretation of nonstationarity (Slater et al. 2021). In the years immediately after a large forest disturbance (e.g., megafire), 

water managers may require rapid estimates of the potential hydrological impacts without the luxury of waiting for more 470 

data to accrue. Counterfactual model simulations can help isolate disturbance effects from stochastic weather and other 

variability, but it is notoriously challenging to quantify the uncertainty of distributed process-based models. Direct 

uncertainty estimation based on subjective likelihood metrics (e.g., GLUE, Beven and Binley 1992) is statistically 
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unjustified (Mantovan and Todini 2006, Stedinger et al. 2008). Nevertheless, by using a subjective sample of models to 

constrain sensitivity (Fig. 5), we can perform classical Bayesian inference (Eq. 2) to sample the relationship between an 475 

unknown outcome (e.g., the streamflow response to fire) and an observational constraint (e.g., bias stationarity). This 

framework overcomes the statistical limitations of process-based models by treating the results from equifinal parameter sets 

as independent data points that constrain a statistical metamodel (Eq. 2), which should be transferable to other disturbance 

studies. Moreover, the statistical metamodel provides an 82% uncertainty reduction compared to the raw DHSVM ensemble 

with just four years of post-fire streamflow data in a single watershed. Further calibration tests in other watersheds could 480 

inform a transferrable understanding of equifinality that might help constrain the post-fire streamflow response with fewer 

years of post-fire data, and could even help constrain predictions for possible future disturbances before they happen. 

 

Our findings suggest a generally applicable conceptual framework for hydrological model simulations of many types of 

change beyond just environmental disturbance. In brief, it is important to ensure that our models are stationary with respect 485 

to the variability they are used to investigate. For our present study of the streamflow response to a forest fire, the model 

should have stationary bias across pre- and post-fire periods. For a study on climate warming effects, modelers could test the 

stationarity of model biases in warmer or cooler years or locations. For a drought study, model bias stationarity could be 

evaluated between wet and dry periods. Many analogous examples are easily imagined. We anticipate that testing bias 

stationarity across different types of change can help reduce both equifinality and uncertainty, as shown here. 490 

5 Conclusion 

In light of our results from this test application, we offer some general recommendations for process-based simulations of 

environmental disturbance in a hydrological context. 

• Parameter uncertainty extends beyond the subsurface. We suggest calibrating or at least testing the sensitivity of 

parameters controlling the partitioning of ET fluxes (e.g., overstory/understory transpiration, interception loss, soil 495 

evaporation, etc.). Ideally, uncertainty in meteorological biases should also be propagated during calibration. 

 

• Nonstationary error metrics (e.g., positive or negative bias shift) can indicate a failure to adequately represent 

change. Rejecting parameter sets with a bias shift after disturbance (or with respect to some other change) can help 

reduce equifinality and thus also reduce uncertainty in hydrological changes. 500 

 

• Modelers should beware of “reward hacking” (i.e., overfitting) during calibration. In this study, selecting the 

highest-NSE parameter sets would lead to a 79% underestimation of the streamflow response to disturbance relative 

to the mean value of the conditional metamodel (analogous 58% underestimation using log NSE). 

 505 
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• We caution against direct derivation of uncertainty ranges from subjective parameter ensembles, as this could lead 

to unnecessarily high uncertainty with poor statistical justification (Fig. 5). Instead, model results can inform a 

statistical metamodel conditioned on observation-based metrics related to stationarity (e.g., bias shift), enabling the 

derivation of uncertainty from classical Bayesian inference (Eq. 2). The statistical metamodel structure will 

necessarily depend on the study objectives, but the principle is generally applicable to other models and types of 510 

environmental change. 

Data and Code Availability 

All model inputs/outputs, model code, analysis scripts, processed data, and other materials needed to understand and 

reproduce the results of this study will be archived on Zenodo after acceptance. In particular, the R script 

“5_BayesianModeling.R” may be useful for anyone interested in adapting our hybrid Bayesian framework (Eq. 2) to other 515 

projects. 
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