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Abstract. Model simulations are widely used to understand, predict, and respond to environmental changes, but uncertainty
in these models can hinder decision-making. The simulation of hydrological changes after a forest fire is a typical example
where process-based models with uncertain parameters may inform consequential predictions of water availability. Different
parameter sets can yield similarly realistic simulations during model calibration but generate divergent predictions of change,
a problem known as “equifinality.” Despite longstanding recognition of the problems posed by equifinality, the implications
for environmental disturbance simulations remain largely unconstrained. Here, we demonstrate how equifinality in water
balance partitioning causes compounding uncertainty in hydrological changes attributable to a recent 1,540 km? megafire in
the Sierra Nevada mountains (California, USA). Different sets of calibrated parameters generate uncertain predictions of the
four-year post-fire streamflow change that vary up to six-fold. However, controlling for nonstationary model error (e.g., a
shift in the model bias after disturbance) can significantly (p < 0.01) reduce both equifinality and predictive uncertainty.
Using a statistical metamodel to correct for bias shift after disturbance, we estimate a streamflow increase of 11% +1% in the
first four years after the fire, with an 18% +4% increase during drought. Our metamodel framework for correcting
nonstationarity reduces uncertainty in the post-fire streamflow change by 80% or 82% compared to the uncertainty of pure
statistical or pure process-based model ensembles, respectively. As environmental disturbances continue to transform global
landscapes, controlling for nonstationary biases can improve process-based models that are used to predict and respond to

unprecedented hydrological changes.
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1 Introduction

Calibration — systematic adjustment of model parameters to improve simulation accuracy.
Disturbance — an event that changes an environmental system from one state to another.
Equifinality — the production of similar results for different reasons.

Stationarity — the invariance of a statistical property across different time periods.

Environmental disturbances (e.g., forest fires, other vegetation mortality events, floods, anthropogenic land cover
conversion, etc.) can alter the structure and function of ecohydrological systems (Zehe and Sivapalan 2009, Ebel and Mirus
2014, Buma 2015, Johnstone et al. 2016). Climate change and environmental disturbances introduce nonstationarity into the
hydrological cycle, which is disrupting longstanding statistical approaches to water resource and risk management (Milly et
al. 2008, 2015, Hirsch 2011, Salas et al. 2012, Yang et al. 2021).

Pure statistical methods (e.g., regression models lacking an explicit physical foundation) can sometimes detect streamflow
changes attributable to environmental disturbance by comparing measurements to a stationary model, which represents a no-
disturbance counterfactual. Statistical change attribution is generally applied across many years and numerous sites (e.g.,
Goeking and Tarboton 2022a, Hampton and Basu 2022, Williams et al. 2022) or in careful paired watershed studies to
overcome climate/weather variability (e.g., Bart 2016, Manning et al. 2022, Johnson and Alila 2023, Kang and Sharma
2024). However, in a single watershed with a short post-disturbance record, pure data-driven statistical approaches are
inherently limited. Crucially, many water management decisions (e.g., reservoir release schedules) are made on a per-
watershed and per-year basis, so large-scale retrospective statistical assessments of disturbance effects may not provide

actionable insights in any particular watershed.

Spatially distributed process-based hydrological models, and related land surface or Earth system models, are a widely
accepted tool that can overcome some limitations of statistical disturbance attribution (Fatichi et al. 2016, Pongratz et al.
2018, Fisher and Koven 2020). Since interannual climate variability often obscures hydrological changes caused by
disturbance, counterfactual model experiments using an undisturbed control are a cornerstone of ecohydrological disturbance
attribution studies (e.g., Moreno et al. 2016, Saksa et al. 2017, Boisramé et al. 2019, Meili et al. 2024). Moreover, key
process representations (e.g., flow routing and the snowpack energy balance) are expected to generalize beyond observed
conditions, providing a basis for the prediction of hydrological responses to out-of-sample events including extreme storms
(e.g., Huang and Swain 2022), decadal-scale climate change (e.g., Tague et al. 2009), and unprecedented “megafires” (e.g.,
Abolafia-Rosenzweig et al. 2024).
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Since we lack landscape-scale observations of many important environmental properties, model parameters are often
estimated through calibration. Equifinality arises during calibration when different parameter sets yield similar realizations
of observable phenomena (Beven 1993, 2006, Ebel and Loague 2006). Recognizing that equifinality may preclude the
possibility of picking a single “best” parameter set, some modelers advocate for using a “behavioral” ensemble based on
subjective goodness-of-fit criteria in a generalized likelihood uncertainty estimation (GLUE) framework (Spear and
Hornberger 1980, Beven and Binley 1992, Her and Chaubey 2015, Vrugt and Beven 2018).

Equifinality implies process uncertainty (Grayson et al. 1992, Khatami et al. 2019). For example, total evapotranspiration
(ET) is the sum of overstory and understory transpiration, interception loss, soil evaporation, snow sublimation, and other
vapor fluxes; equifinal parameter sets may produce the same total ET with different partitioning between constituent fluxes
(Franks et al. 1997, Birkel et al. 2024). Since each vapor flux component can respond differently to disturbance (Goeking
and Tarboton 2020), we hypothesize that equifinal parameter sets may produce divergent predictions when the model is

perturbed beyond the calibration space.

We illustrate the hypothesized interaction of equifinality, disturbance, and bias (non)stationarity using a conceptual water
balance model (Fig. 1). Example models of the pre-disturbance water balance each achieve the same mean pre-disturbance
streamflow (Q), which is forced to approximately match Q observations through model calibration. Due to equifinality, there
is residual uncertainty in the bias-corrected total precipitation (P) and the partitioning of ET between transpiration and
interception from tree canopies (ETtwee) and other vapor fluxes (ETomer, €.9., understory ET and soil evaporation). When a
disturbance such as a fire reduces ETrre, the streamflow response is sensitive to the initial ETtee magnitude (and hence the
potential ET reduction) as well as the degree to which ETomer responds to increased soil water availability. Over- or under-
estimation of the resultant streamflow change (AQ) manifests as a positive or negative “bias shift” after disturbance. The bias
shift metric, as defined here, is a special discrete case of the more general concept of nonstationarity. In a system with
changes that occur over longer time periods (in contrast to the discrete disturbance shown in Fig. 1), a different stationarity
metric would be necessary to account for incremental changes. In the present study, zero bias shift after disturbance implies

stationary error overall.
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Figure 1: Conceptual model illustrating how equifinality in the modeled water balance may lead to uncertainty in the streamflow
response to disturbance, and how we expect this to manifest in a measurable “bias shift” after a discrete disturbance. Numbers are
indicative and not intended to represent actual disturbance magnitudes.

We build on this conceptual example of the interaction between equifinality, disturbance, and nonstationarity (Fig. 1) to
consider how the bias shift metric can help select parameter sets with enhanced physical fidelity and greater predictive
confidence. The initial water balance of Model 1 is dominated by ETrre, leading to a large streamflow gain and a positive
bias shift (tendency toward over-prediction of post-disturbance streamflow). Conversely, Model 2 has a large ETother
component, which compensates for the comparatively small reduction in ET+re, leading to a negligible streamflow gain and
a negative bias shift (tendency toward under-prediction of post-disturbance streamflow). Finally, Model 3 has more
precipitation than the other models and a more balanced combination of ETree and ETower, leading to a medium streamflow
gain and stationary bias. In this case, Model 3 should be preferred due to its negligible bias shift, which would help achieve a

better prediction of AET and AQ and also help constrain uncertainty in the underlying parameterization.

The interaction of equifinality and disturbance is rarely addressed in process-based simulations. In contemporary studies,
single parameter sets are sometimes used with or without calibration (e.g., Furniss et al. 2023, Abolafia-Rosenzweig et al.
2024). When calibrated ensembles are used, uncertainty propagation is commonly limited to subsurface parameters and
meteorological biases (e.g., Shields and Tague 2012, Saksa et al. 2017, Boisramé et al. 2019). We expect that latent

uncertainty in vegetation parameters may contribute an unconstrained source of uncertainty in studies of ecohydrological
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disturbance that do not account for vegetation parameter equifinality. Conversely, model equifinality can be reduced by
leveraging additional types of information beyond traditional streamflow calibration metrics (Kelleher et al. 2017). One
unexplored approach to equifinality reduction is evaluating the stationarity of model biases after environmental disturbance,
which we consider here.

In this study, we leverage a large wildfire as a “natural experiment” to test the hypothesis that quantifying stationarity across
pre- and post-disturbance periods can reduce equifinality and improve the predictive confidence of a process-based
hydrological model. Specifically, we apply the Distributed Hydrology Soil Vegetation Model (DHSVM, Wigmosta et al.
1994) to simulate streamflow changes attributable to the Creek Fire in the Sierra Nevada mountains (California, USA),
which burned 56% of the forested area in our 4,244 km? study watershed (Stephens et al. 2022, Ayars et al. 2023). We
expect that this drastic landscape-scale environmental disturbance should have a clear impact on regional-scale water fluxes,
providing an opportunity to test whether model process representations are robust to disturbance. We leverage a multi-
objective calibration of vegetation, snow, subsurface, and meteorological bias-correction parameters to address two research
questions:

(1) How does calibration equifinality impact process-based simulations of the hydrological response to a megafire?

(2) Can we reduce equifinality and uncertainty by testing the model’s representation of hydrological change?
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2 Methods
125 2.1 Study Area and Data

Our study watershed encompasses the Upper San Joaquin River Basin above Millerton Lake, a total of 4,244 km? with an
elevation range of 100 to 4,200 m (Fig. 2A). The 2020 Creek Fire burnt 1,540 km? of mixed conifer and scrub forest,
including 1,481 km? within the study watershed (56% of the forested watershed area). Landsat-based data from Monitoring
Trends in Burn Severity (MTBS, Fig. 2B) indicate that 16% of the Creek Fire exhibited high burn severity and 30%
130 exhibited moderate severity (Eidenshink et al. 2007, MTBS Project 2022). However, using a longer time period for pre- and

post-fire imagery, Stephens et al. (2022) estimate 41% high severity and 35% moderate severity, illustrating the proliferation

of uncertainty in disturbance assessments.
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135 Figure 2: Maps of the study watershed: (A) elevation and watershed location in the U.S. State of California, (B) 2020 Creek Fire
burn severity from MTBS, (C) pre-fire and (D) post-fire forest canopy cover from RCMAP. Tick marks indicate 10 km intervals
in UTM zone 11N.
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We represent fire disturbance in DHSVM by adjusting maps of vegetation properties. All maps are projected to our selected
DHSVM resolution of 90 m. The Landsat-based RCMAP data provide yearly fractional cover estimates for trees and
shrub/herbaceous vegetation at 30 m resolution (Rigge et al. 2021a,b). We use the 2011-era RCMAP data as a pre-fire
baseline and the 2021-era RCMAP data to capture the effects of the 2020 Creek Fire (Fig. 2C-D). We also update the
vegetation maps in 2013, 2014, and 2018 to reflect smaller fires in those years. The DHSVM vegetation maps are updated on
October 1% in the year of a fire, i.e., about one month after the September 2020 Creek Fire ignition. Vegetation is classified
based on the species (when available) or functional type (e.g., mixed conifer forest) using Landfire data (2022), and abiotic
land surface classes are derived from NLCD (Dewitz and U.S. Geological Survey 2019). Landfire and RCMAP provide tree
and shrub height data, respectively. Tree leaf area index (LAI) is estimated empirically from fractional cover following
Pomeroy et al. (2002), which is reproduced as Eq. (1) of Goeking and Tarboton (2022b). Vegetation transpiration is
calculated by DHSVM based on the vegetation type and local weather, soil moisture, and light in each grid cell (Wigmosta et
al. 1994). Baseline values of minimum stomatal resistance are estimated from species-level field studies as detailed in the
Supporting Information of Boardman et al. (2025). Fractional cover, LAI, and stomatal resistance are refined by calibration

relative to baseline (Sect. 2.2).

Spatial maps and parameter values for DHSVM are collated from a wide range of literature and field studies, as detailed in
Boardman et al. (2025) and Boardman (2023). We briefly summarize key setup procedures here. Subsurface properties are
estimated by disaggregating regional soil survey databases (Gupta et al. 2022, Soil Survey Staff 2022) using Random Forest
models trained on topographic metrics (Breiman et al. 2002). In the updated version of DHSVM used here, streamflow in
channels is bidirectionally coupled to the groundwater level in each grid cell, and the maximum network extent is derived
from the National Hydrography Dataset (U.S. Geological Survey 2019) with channel geometry from regional regressions
(Bieger et al. 2015). Meteorological data from gridMET (Abatzoglou 2013) are disaggregated to a 3-hour timestep using
MetSim (Bennett et al. 2020). Modeled snowfall is distributed in proportion to the pixel-wise maximum observed snow
water equivalent (SWE) pattern derived from Airborne Snow Observatory (ASO) data in the study watershed (Painter et al.
2016), which implicitly accounts for snow transport (Vo6geli et al. 2016). Regional snow/rain partitioning parameters are
adopted from Sun et al. (2019).

2.2 Model Calibration

We calibrate 14 sensitive and uncertain parameters in DHSVM that control aspects of the meteorology, vegetation,
subsurface, and snowpack dynamics (Table 1). While most of these parameters are widely recognized as suitable for
calibration (Cuo et al. 2011, Du et al. 2014), precipitation and temperature biases are less frequently included in the
calibration of distributed process-based models despite considerable uncertainty in gridded meteorological data (Henn et al.

2018). We expect that interactions between meteorological uncertainty and parameter equifinality may contribute to the

7
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overall uncertainty of disturbance simulations (Fig. 1), but this uncertainty would remain hidden if meteorological biases

were assumed zero.

Tree Fractional
Cover

baseline, each cell <
100% cover

Category Parameter Range Primary Process Controls
Precipitation Bias +9504 \II\Ivzievrv?/tiirlé)alance input, interannual variability in
Meteorology Temperature Bias +4°C (S;é)_\;_v)/ram partitioning, potential evapotranspiration
Temperstatige Lapse -8t0 -2 °C/km Spatial distribution of snow and PET
50% to 200% of

Canopy interception and transpiration, understory and
snowpack shading

(Melt Season)

accumulation

Vegetation Tree Leaf Area 50% to 200% of Canopy interception capacity, overstory transpiration
Index (LAI) baseline d P pacity, y P
Stomatal 50% to 200% of L
. : Overstory and understory transpiration
Resistance baseline
Soil Depth 1t010m Lateral transmissivity, root zone groundwater access,
storage capacity
Hydraulic . 2 Lateral transmissivity, vertical recharge rate (by
L 10~ to 10 m/s : . I
Conductivity anisotropy ratio), surface/subsurface flow partitioning
Exponential Lo . . .
Subsurface Decrease in 10 to 10° [unitless] Lateral transmissivity, vertical conductivity profile,
g, baseflow recession, water table depth
Conductivity
Porosity 0.3 0 0.6 [fractional] Dynamic storage range, water table response to
infiltration
Field Capacity 0.1 t0 0.4 [fractional] Dynamic storage range, soil water retention, plant
available water
Albedo Det_:ay 0.7 t0 0.99 Snowpack energy balance, maximum accumulation
(Accumulation)
Snow Albedo Decay -0.3to 0.0 relative to | Snowpack energy balance, snowmelt rate, snow cover

duration

Albedo Reset
Snowfall Scale

10 to 10° m SWE

Albedo increase associated with new snowfall of a
given depth

Table 1: Prior ranges and process controls of DHSVM parameters calibrated in this study. All vegetation and subsurface
parameters listed here are defined by spatially variable maps, and calibration ranges determine the area-average value around
which the pattern is rescaled.

Multiple parameters combine to control simulated processes. For example, area-average LAI (related to total interception
loss) is the product of tree-scale LAI with grid-scale fractional cover. Tree transpiration is determined by fractional cover,
LAI, stomatal resistance, available soil water (related to subsurface parameters), and other factors. Lateral transmissivity in
the saturated subsurface is controlled by three parameters: soil depth, surface hydraulic conductivity, and the exponential
decrease in conductivity with depth. Cross-compensation among interrelated parameters thus contributes to equifinality.

Within our 14-dimensional calibration space, 23 parameter pairs have correlations that are significant at p < 0.05
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(Supplemental Fig. S1). Furthermore, perturbing one aspect of the model can lead to cascading effects due to the coupling of
ecohydrological processes and spatial water connectivity in the model. For example, lateral hydraulic conductivity is coupled
to vertical conductivity by anisotropy ratios dependent on the soil textural classification (Fan and Miguez-Macho 2011), so
calibrating lateral conductivity also influences groundwater recharge rates from losing stream reaches, which in turn can
affect soil evaporation and transpiration from riparian trees. Spatial heterogeneity in modeled soil and vegetation properties
(Sect. 2.1) further complicates all of these interactions, e.g., different parts of the landscape are relatively more sensitive to

calibration of different parameters depending on the baseline map patterns.

Given the complexity of expected interactions, we define seven objective functions to constrain parameters based on
different hydrological signatures (Table 2). Three objectives are based on daily streamflow, which is reconstructed at
Millerton Lake (Fig. 2) to remove the effects of upstream reservoirs and diversions (California Department of Water
Resources 2024). Two objective functions similarly target annual percent error in the annual water yield and the April-July
water yield, which is a well-established benchmark for snowmelt runoff modeling in the Sierra Nevada (Pagano et al. 2004).
Two objective functions are based on the eight-year (2017-2024), 30-survey database of ASO SWE maps in the study area,
targeting both the spatial distribution at the 90 m grid scale and the percent error in total volume across surveys. Hydrograph
and water yield objectives are calculated for water years 2015-2024, which includes six years before and four years after the
Creek Fire. By calibrating across this disturbance (vegetation maps updated during calibration), we automatically reject

parameter sets that fail to provide reasonably accurate estimates of both pre- and post-fire streamflow.

Category (;BJneCitlgﬁ \/Bfflite \\//Vé)lzs: Target Hydrological Signatures
NSE 0.89 0.80 Hydrogr_aph sh_a_pe _(hlgh flows), ralnfall-run(_)ff response,
Daily snow/rain partitioning, peak flow and recession timing
Streamflow Log-Scaled NSE 0.85 0.80 Hydrograph shape (low flows), baseflow recession

characteristics, multi-year storage/deficit effects

(2015-2024) >95"-Percentile High flow magnitude, shape of flow duration curve

26 m®/s 74 md/s

RMSE independent of timing
_ Yearly MAPE 4% 9% Bulk water balance, interannual variability across wet and

Water Yield dry years
(2015-2024) April-July MAPE 7% 10% :?ntqei;agnnual variability in snowmelt runoff efficiency and
Snow Maps Pixel-Wise SWE 023m 025m Spatial distribution of snow accumulation and ablation,

(30 AsO RMSE ' ' absolute magnitude of SWE in different years

Surveys, Total SWE 18% 3004 Evolution of snowpack volume between surveys,
2017-2024) Volume MAPE 0 0 interannual variability

Table 2: Calibration objective functions used in this study with descriptions of the primary hydrological signatures constrained by
each objective. The best (worst) value given here is the lowest (highest) error achieved by any of the Pareto-efficient parameter sets
in our calibrated 30-member behavioral ensemble. NSE = Nash Sutcliffe Efficiency (identical to R? for statistical models), RMSE =
root mean square error, MAPE = mean absolute percent error.
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To efficiently sample behavioral parameter sets from the 14-dimensonal space of potential interactions, we apply a multi-
objective Bayesian optimization scheme (Jones et al. 1998). After an initial Latin hypercube sample of 320 parameter sets
(Dupuy et al. 2015), we perform parallel particle swarm optimization (Kennedy and Eberhart 1995, Zambrano-Bigiarini et
al. 2013) using the expected hypervolume indicator (Emmerich et al. 2011, Binois and Picheny 2019) to sample promising
parameter sets based on Gaussian Process surrogate models of the objective function response surfaces (Roustant et al.
2012). After six optimization generations, we have tested a total of 600 parameter sets (n.b. this requires ~950 days of CPU
time on 2.5 GHz servers, and the elapsed wall-clock time is several weeks since multiple parameter sets are tested in
parallel). Of all the tested parameter sets, 48 qualify as “behavioral” by satisfying the following subjective criteria: daily
NSE > 0.8, daily log NSE > 0.8, yearly MAPE < 10%, April-July MAPE < 10%, and Pareto-efficient across all objectives.
Some parameter samples are similar, so for efficiency we further select 30 diverse samples by iteratively choosing the
behavioral parameter set with the maximum mean parameter separation from previously selected samples. These 30
parameter sets define the behavioral DHSVM ensemble referenced hereafter. We note that our conclusions are robust to

random sub-selection of fewer models, as long as at least ~10 parameter sets are used (Supplemental Fig. S2).

2.3 Disturbance Simulations

We investigate the ecohydrological effects of the Creek Fire by comparing model simulations using dynamic and static
vegetation maps to quantify the fire effect relative to a no-fire control scenario. For each of the 30 DHSVM parameter sets,
we simulate streamflow for the past 20 years (water years 2005-2024) with either static 2011-era vegetation maps or
dynamic vegetation maps updated in 2013, 2014, 2018, and 2020. The 2020 Creek Fire accounts for most of the vegetation
disturbance in the study area, with a 42% reduction in watershed-average RCMAP tree fractional cover compared to 2-3%
reductions associated with the 2013, 2014, and 2018 fires. Differences between fire-aware (dynamic vegetation) and no-fire
control (static vegetation) simulations define the modeled disturbance effect. In addition to comparing daily streamflow, we

also compare annual water yield and ET fluxes between fire-aware and no-fire control scenarios.

2.4 Detecting and Correcting Nonstationarity

We calculate a “bias shift” metric by comparing observed streamflow with modeled streamflow from the fire-aware
(dynamic vegetation) simulations. The 30-member behavioral DHSVM ensemble has a reasonably small mean streamflow
bias for the overall 2005-2024 evaluation period (interquartile range among parameter sets of +2%). However, some
parameter sets have different mean streamflow biases on pre- and post-fire periods, congruent with our conceptual model in
Fig. 1. We theorize that over- or under-estimation of the disturbance effect on streamflow may result in a matching positive
or negative bias shift after disturbance, defined as the difference in mean streamflow bias between post-fire and pre-fire
periods:

10
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Bias Shift = (QModel - QMeas.)Post—Fire - (QModel - QMeas.)Pre—Fire (1)

We correct for the bias shift of different parameter sets by developing a “metamodel,” i.e., a statistical model trained on
DHSVM outputs. The bias shift metric, Eq. (1), is averaged across multiple years, whereas we expect that each individual
year may have a larger or smaller streamflow response due to variable interactions between climate and vegetation. In the
case that the streamflow response is purely energy-limited (P >> ET), we would expect the same post-fire streamflow gain in
all years; conversely, in a water-limited case (P closer to ET magnitude) we would expect a 1:1 scaling between annual
precipitation and the post-fire streamflow gain. Between these two endmember scenarios, we expect that the magnitude of
the simulated streamflow change in any particular year may be offset and/or fractionally re-scaled relative to the mean multi-
year streamflow change. Thus, we posit a linear relationship between the multi-year bias shift and the simulated streamflow

response to fire in any particular year, AQFire.

In a Bayesian statistical framework, we treat each DHSVM parameter set as an independent realization of the possible post-
fire response, with a stochastic error term describing scatter in the hypothesized linear relationship between bias shift and
AQFrire. We define the metamodel using a normal distribution with mean determined by the linear bias shift vs. AQFrire
relationship and uncertainty defined by the sample standard deviation o, which can be expressed in Bayesian sampling
notation as:

AQpire ~ normal(cy + ¢, * Bias Shift, o) (2)
To estimate the values of co, €1, and o (with quantified uncertainty in all three parameters), we generate 1,000 Bayesian
samples using the Hamiltonian Monte Carlo algorithm with two chains (500 samples per chain) after 10,000 warmup
iterations (Stan Development Team 2023). The metamodel is fit using all 30 pairs of bias shift and AQFrir values calculated
for each parameter set in the behavioral DHSVM ensemble, with co, c1, and o re-fit for each of the four post-fire years. We
subsequently generate a conditional prediction of AQFrir in €ach year by setting the bias shift equal to zero in Eq. (2), which
yields a normal distribution with mean ¢y and standard deviation ¢. Unlike simple least-squares linear regression, uncertainty
in the metamodel parameters (co, €1, and o) is propagated into our conditional predictions through the Bayesian sampling
routine, which considers 1,000 different combinations of plausible co, ¢1, and ¢ values. Sampling the posterior distribution of
Eq. (2) with bias shift set to zero yields a conditional distribution describing the expected post-fire streamflow change and
uncertainty of a hypothetical DHSVM simulation with zero bias shift.

2.5 Empirical Regression Model

To compare statistical and process-based approaches to ecohydrological disturbance attribution, we also apply an empirical
annual water balance model using Bayesian multiple linear regression. We posit a simple four-parameter lumped empirical
model that estimates the annual runoff efficiency (Q / P) as a linear function of annual precipitation (P), the prior year’s

streamflow (Quastvear) t0 account for multi-year storage or deficit effects, and the aridity index calculated from annual

11
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potential evapotranspiration (PET / P). The model structure is adapted from a similar regression approach applied to analyze
275 seasonal water supply in adjacent watersheds (Boardman et al. 2024). We assume that each year’s actual runoff efficiency is
randomly sampled from a normal distribution with standard deviation ¢ and mean defined by the linear model, expressed

analogously to Eq. (2) in Bayesian sampling notation:
Q PET 3
F~normal Co+ ¢ * P+ ¢y * Qrasevear + C3 * =50 3)

We constrain the empirical model using pre-fire data and compare its post-fire predictions with measured post-fire
280 streamflow. Meteorological data required for Eq. (3) are aggregated from the same gridMET data used for DHSVM
(Abatzoglou 2013) over water years 1980-2020. As for Eq. (2), we generate 1,000 Bayesian samples of the empirical model
parameters (Co, C1, C2, and o) using Hamiltonian Monte Carlo (Stan Development Team 2023). The empirical model achieves
R? = 0.91 for annual variations in runoff efficiency across the 41-year fitting period. By sampling the model’s posterior
predictive distribution using meteorological data from 2021-2024, we generate 1,000 counterfactual estimates of annual
285 streamflow in each of the post-fire years. The difference between measured post-fire streamflow and predicted streamflow

from the stationary statistical model provides an estimate of the streamflow change attributable to disturbance.
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3 Results

290 The behavioral ensemble of 30 calibrated DHSVM parameter sets all satisfactorily reproduce observed streamflow
hydrographs (Table 2, Fig. 3). Daily NSE values for the 2015-2024 calibration period vary between 0.80 and 0.89 (log NSE
0.80-0.85), with similar statistics on the 2005-2014 validation period (NSE 0.76-0.88, log NSE 0.80-0.89). All behavioral
parameter sets also achieve satisfactory NSE (0.80-0.87) and log-scale NSE (0.76-0.84) considering just the four years after
the Creek Fire. The mean post-fire bias varies by -9% to +6%. Comparing fire-aware and no-fire control scenarios, the

295 behavioral ensemble indicates a bulk streamflow increase of +2 to +17% after the Creek Fire (median +12%). DHSVM also

indicates a shift towards earlier snowmelt runoff after the Creek Fire, particularly in the snowy 2023 water year.
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Figure 3: Modeled and measured daily streamflow hydrographs (top panel) and streamflow differences between fire-aware and
300 no-fire control simulations (bottom panel). Both panels show results from 30 calibrated “behavioral” parameter sets (Sect. 2.2).
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Uncertainty in the streamflow response to disturbance is large relative to the size of the effect, even after a megafire. The
difference in total post-fire streamflow volume between fire-aware and no-fire control scenarios has a coefficient of variation
of 41%. Some parameter sets predict up to a 650% larger streamflow response than other parameter sets (inter-model range
of +13 to +97 mm/yr). Relative uncertainty is higher in dry years, with the simulated streamflow response in 2021 varying
between +3 mm/yr and +47 mm/yr across different parameter sets (1,400% range). The predicted streamflow change after
the Creek Fire is on the same order of magnitude as stochastic error in the annual water balance (Supplemental Fig. S3),
which intuitively explains why the disturbance response remains uncertain despite direct calibration of pre- and post-fire
streamflow (Fig. 3).

Uncertainty in the post-fire streamflow response is linked to equifinality in modeled water balance fluxes (Figs. 1, 4). To
qualify as “behavioral,” parameter sets must satisfactorily estimate the annual water balance (MAPE < 10%), but the model
can achieve this in different ways. Some parameter combinations suggest that transpiration and interception loss from
vegetation accounts for up to 95% of total pre-fire ET, while others suggest a vegetation contribution as low as 77%, with
the balance contributed by evaporation from abiotic surfaces (stream channels and soil, including rock above treeline).
Relatively dense initial forests (high area-average LAI) are associated with large decreases in post-fire transpiration and
interception loss (Pearson r = -0.92, p < 0.01). Low transmissivity is associated with increases in post-fire soil evaporation
and channel evaporation (r = -0.99, p < 0.01, both variables log-transformed).
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Figure 4: Difference in ET fluxes between fire-aware and no-fire control simulations visualized relative to model parameter
uncertainty. The area-average leaf area index (LAI) is aggregated within the pre-fire forested area from maps of tree-scale LAI
and grid-scale fractional cover, and the area-average transmissivity is aggregated from maps of soil depth, conductivity, and
exponential decrease using the DHSVM transmissivity equations (Table 1). Trend lines indicate the least-squares fit and 90%
confidence interval of the best-fit linear estimator.

Compensating errors in equifinal parameter sets can produce compounding discrepancies after disturbance. Not only do
some parameter sets indicate much larger changes in individual fluxes, those with the smallest reductions in vegetation ET
also exhibit the largest fractional compensation (up to 76%) from increased abiotic evaporation (r = 0.71, 0.01). A similar
compensation between modeled overstory and understory ET components is illustrated by Boardman et al. (2025). Low
calibrated transmissivity implies slower groundwater recharge and shallower flowpaths, contributing to higher soil
evaporation, which compensates for low vegetation ET. These parameter sets are primed for large increases in evaporation
when soil moisture increases in de-forested areas after fire. Consequentially, there is a negative correlation (r = -0.93, p <
0.01) between the fraction of pre-fire ET contributed by abiotic evaporation and the magnitude of the post-fire net ET

reduction.

Evaluating the model bias shift (Eq. 1) can help escape this morass of uncertainty. Across the 30-member behavioral
ensemble, there is a strong correlation (r = 0.96-0.99 depending on year, p < 0.01) between the mean streamflow bias shift
after disturbance and the annual streamflow change attributable to fire (Fig. 5). Lines in Fig. 5 correspond to Eq. (2), and the

horizontal axis is defined by Eq. (1). Bayesian sampling of a linear model conditioned on zero bias shift yields an estimate of
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the uncertainty in the vertical intercept (Sect. 2.4), which is the predicted streamflow change of models with stationary bias.
Comparing the annual streamflow errors of models with positive or negative bias shift (Supplemental Fig. S3), we note that
the positive-shift models tend to have more-positive errors on the pre-fire period compared to negative-shift models, but this
stratification reverses after the Creek Fire. This reversal of model over- and under-prediction after disturbance is consistent
with our conceptual model in Fig. 1. Additionally, as shown by the shape-size in Fig. 5, the models with the largest over-
prediction have anomalously high overstory LAI, and vice versa, which is similarly consistent with the conceptualization of
ETrree and ETower equifinality in Fig. 1.

+150
Water Year
Bias Shift = A2021
+125— 2022
A (Q Model — Q Meas.) ©
m 2023
5 T v 2024
£
S +75—
~ Leaf Area
i Index
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No-Fire « Under-Prediction | Over-Prediction —
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Bias

Bias Shift After Disturbance (mm / yr)

Figure 5: Annual post-fire streamflow change visualized relative to the mean bias shift after disturbance for all 30 parameter sets.
Parameter sets with a shift towards overestimation predict a relatively large streamflow response to disturbance, and vice versa.
Parameter sets with near-stationary bias are assumed to give the most accurate estimate of changes due to disturbance. Trend
lines indicate the least-squares fit and 90% confidence interval of the best-fit linear estimator, distinct from the analogous
Bayesian regression in Eq. (2), which also propagates parameter uncertainty.

Eight parameter sets result in near-stationary bias (shift less than 10 mm/yr). This eight-member “stationary sub-ensemble”
demonstrates how considering bias shift after disturbance can reduce equifinality. Compared to 10* alternative sub-
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ensembles of eight parameter sets each randomly selected from the 30-member ensemble, the stationary sub-ensemble has
significantly reduced uncertainty in LAI (p < 0.01) and transmissivity (p < 0.02), calculated from the cumulative distribution
function for the fractional uncertainty reduction of all 10* sub-ensembles. This uncertainty reduction associated with the
stationary sub-ensemble is 72% larger for LAI and 285% larger for log-transformed transmissivity compared to the median
uncertainty reduction of same-sized sub-ensembles selected randomly. The stationary sub-ensemble has mean 2011-era LAI
between 1.9-2.8 m?/m?, which is 74% less uncertainty compared to the full behavioral ensemble range of 0.9-4.1 m%m? (Fig.
5). Analogously, the stationary sub-ensemble has 50% less uncertainty in log-transformed mean transmissivity despite order-
of-magnitude residual uncertainty (108-1378 m?/d). Meteorological uncertainty remains mostly unchanged in the stationary
sub-ensemble, with 3.7 °C and 15% uncertainties in temperature and precipitation biases, respectively, compared to 4.4 °C
and 15% for the behavioral ensemble (no significant change relative to random sub-ensemble selection). This leads to similar
uncertainty in the stationary sub-ensemble’s post-fire evaporative index (ET / P) compared to the full ensemble (25-34% vs.
24-39% respectively). Among all 14 calibrated parameters (Table 1), only the melt-season albedo decay rate has a
statistically significant difference in the mean (p < 0.05, Welch two-sample t-test) between the stationary sub-ensemble and
the full 30-member ensemble. Instead, most of the equifinality reduction arises from shrinking the uncertainty of the
parameter distributions rather than changing their mean (Supplemental Fig. S4) and/or from constraining multi-dimensional

parameter interactions (Supplemental Fig. S1).

Compared to the full behavioral ensemble, the stationary sub-ensemble has slightly sub-optimal hydrograph fit (NSE 0.80-
0.85 vs. 0.89 max), but generally better SWE volume error (MAPE of 18-27% across 30 ASO surveys vs. 32% for the
highest-NSE parameter set). The stationary sub-ensemble has statistically lower (worse) mean NSE values compared to the
30-member ensemble (p < 0.05) and approaches the threshold for significantly lower (better) mean SWE volume percent
error (p = 0.055). The >95™M-percentile peak flow RMSE is also significantly worse (p < 0.05) for the stationary sub-
ensemble. Differences in log-scale NSE and annual or April-July water yield error are not statistically significant. The
improvement in snow skill despite a slight worsening of streamflow skill (Supplemental Fig. S5) may arise from overfitting
during calibration, which leads to a tradeoff between enhanced model physical fidelity (represented by the near-zero bias
shift and better snow performance of the stationary sub-ensemble) and minor degradation in the streamflow performance

metrics.

Empirical regression and process-based simulations both suggest an increase in streamflow after the Creek Fire, albeit with
different uncertainty ranges (Fig. 6). An empirical model (Eq. 3) fit to pre-fire data predicts relatively less post-fire
streamflow than observed, implying a total streamflow increase of +12% with a 90% credible interval of +5 to +18%
assuming that each year’s error distribution is independent. (The 90% credible interval represents the 57-95 percentiles.)
Although the four-year total streamflow increase is significant at p < 0.01, for individual post-fire years we cannot reject the

null hypothesis (no change after disturbance) at the p < 0.01 level, and we cannot even reject the no-change hypothesis at the
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p < 0.1 level in 2021 or 2024. Compared to the pure statistical model based on the same meteorological data, our process-
based modeling approach yields remarkably similar uncertainty. All 30 behavioral DHSVM parameter sets indicate at least
some streamflow increase in each post-fire year, with a similar mean increase of +12% and a marginally wider 90% range of
+3 to +17% across the ensemble. Although the 90% uncertainty ranges are similar between DHSVM and the empirical
regression, all of the DHSVM parameter sets show at least some increase. Additionally, within individual years, the
DHSVM uncertainty can be much lower (e.g., in 2023, the DHSVM 90% range is +2 to +11%, while the empirical
regression 90% credible interval is +3% to +23%). The uncertainty of the empirical model benefits from considering all four
years simultaneously, since the empirical model assumes that each year’s fire effect is independent, while different DHSVM

parameter sets are systematically biased high or low across all post-fire years.

+200—
+150—] Water Year
] [ ]2021
T +100—]
= ] + [ ]2022
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Figure 6: Uncertainty distributions for the annual post-fire streamflow change relative to a control scenario with no fire.
Empirical regression results are estimated by comparing post-fire measurements with 1,000 random samples of a pre-fire multi-
linear regression model (Eq. 3). The DHSVM ensemble represents the difference between fire-aware and no-fire control
simulations using 30 different calibrated parameter sets. The conditional metamodel predicts the DHSVM response subject to the
requirement of stationary bias using 1,000 random samples of the Bayesian regression in Eq. (2). (Note that the vertical axis is
truncated at +200 mm/yr for increased visibility of most results.)
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Compared to pure statistical or pure process-based approaches, a statistical metamodel trained on DHSVM results and
conditioned on bias stationarity can drastically reduce uncertainty. Using 1,000 random samples of the metamodel (Eq. 2),
we find a +11% increase in total post-fire streamflow with a 90% credible interval of +10 to +12%. The mean streamflow
response is 14 standard deviations above zero, confidently rejecting the no-change hypothesis. Moreover, interannual
variability in the conditional streamflow response is separable between all pairs of years at the p < 0.01 level. In contrast,
raw DHSVM simulations of the streamflow response in 2022, 2023, and 2024 are not mutually separable at the p < 0.05
level. Comparing 90% credible intervals, the conditional approach reduces uncertainty in the total post-fire streamflow
change by 80% compared to the empirical regression and 82% compared to the DHSVM ensemble. Of course we cannot
know precisely what the true streamflow would have been without a fire, so some uncertainty must always remain, but our
metamodel results suggest that we can substantially reduce this uncertainty by fusing process-based and statistical

approaches.

4 Discussion

Hydrological models must include forest fires and other environmental disturbances to provide robust predictions for water
resource management, risk assessment, and operational planning. In 2021, the first year after the Creek Fire, our hybrid
modeling approach estimates that the additional streamflow attributable to forest disturbance provided 0.11 +0.03 km?3
(92,000 ac-ft.) of extra water to Millerton Lake (a major regional reservoir, Fig. 2), which is 18% 4% of the total water
yield in a year where drought conditions caused curtailment of downstream water rights (California DWR 2021). In the wet
2023 water year, extra streamflow attributable to the fire totaled ~0.38 +0.04 km?® (310,000 ac-ft., 7% of total water yield),
equivalent to an extra 60% +7% of the reservoir storage capacity in a year with widespread flooding (California DWR 2023).
(All uncertainty ranges indicate the 90% credible interval.) These examples illustrate the potential for major forest
disturbances like forest megafires to enhance water resources and/or exacerbate water risks (e.g., Boardman et al., 2025).
Accurately representing disturbance and accounting for other sources of nonstationarity should be a priority of

ecohydrological modeling.

Our results suggest that equifinality demands more thoughtful consideration in hydrological model-based studies of
disturbance. At the same time, studies investigating disturbance have a unique and underutilized opportunity to reduce model
equifinality. Much of the spread in the DHSVM ensemble (Fig. 6) could be eliminated by reducing the number of calibrated
parameters or narrowing their prior range (Table 1). However, in typical landscape-scale simulations, we do not know the
“correct” parameter values. For example, there is considerable uncertainty in vegetation properties derived from satellite
imagery (Garrigues et al. 2008, Tang et al. 2019) or extrapolated from sparse field data (Meyer et al. 2016). Moreover, in

modeling applications, “effective” parameters may subsume additional sources of structural or data uncertainty (Dolman and
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Blyth 1997, Vazquez 2003, Were et al. 2007), and some quasi-empirical parameters (e.g., grid-scale hydraulic conductivity)
do not have single “correct” values (Beven 1993). Uncertainty in vegetation properties like LAI can produce significantly
different streamflow predictions (e.g., Bart et al. 2016 and Fig. 5 of this study), and latent uncertainty could cause systematic
biases (Fig. 4). Furthermore, even if vegetation properties could be tightly constrained, introducing parameter variability into
model experiments can reveal compensating ecohydrological processes (Figs. 1, 4), counterintuitively leading to higher
confidence in the statistical metamodel by providing datapoints for regression in Eq. (2). Nevertheless, reducing model
parameter uncertainty is generally desirable when justified, and our results show that a sub-ensemble of parameter sets with
near-stationary bias after disturbance can significantly reduce uncertainty in LAI (p < 0.01) and saturated transmissivity (p <
0.02).

Using process-based models for post-disturbance predictions based on traditional streamflow calibration metrics can be
dangerously misleading. Describing model performance with simple goodness-of-fit metrics (e.g., NSE) is problematic in
general due to sampling uncertainty and other issues (Clark et al. 2021), but these metrics remain ubiquitous in modeling
studies (including this study) due to their ease of application and simplicity of interpretation. Although these metrics are
useful for loosely identifying an initial ensemble of behavioral models, our results provide a clear example of the pitfalls in
blindly trusting NSE-based (or similar) calibration strategies. In particular, the four models with the highest daily NSE (0.88-
0.89) have anomalously small disturbance effects, and the parameter set with the absolute highest NSE underestimates the
post-fire streamflow change by 79% relative to the metamodel mean (Supplemental Fig. S6). These outlying parameter sets
are probably compensating for unknown deficiencies in the model structure and/or forcing data, leading the model to get a
slightly higher NSE for what are apparently the wrong reasons. These undesirable and yet numerically optimal solutions are
endemic to high-dimensional optimization problems, an issue known as “reward hacking” (Amodei et al. 2016). Although
log-transformed NSE appears less vulnerable to reward hacking (Supplemental Fig. S6), the parameter set with the absolute
highest log NSE still underestimates the metamodel-based mean streamflow change by 58%. It is noteworthy that our
ultimate model evaluation metric (bias shift, Fig. 5) is not included in the calibration. If this metric were directly calibrated,

it might be susceptible to reward hacking, leading to unreliable inference in Eq. (2).

With care, process-based models can remain powerful tools for hydrological investigation. Despite a recent focus on
machine learning approaches to hydrological prediction (Ardabili et al. 2020, Xu and Liang 2021), purely empirical methods
are limited by the amount of available data, the ability to assign clear process attribution, and the potentially ambiguous
interpretation of nonstationarity (Slater et al. 2021). In the years immediately after a large forest disturbance (e.g., megafire),
water managers may require rapid estimates of the potential hydrological impacts without the luxury of waiting for more
data to accrue. Counterfactual model simulations can help isolate disturbance effects from stochastic weather and other
variability, but it is notoriously challenging to quantify the uncertainty of distributed process-based models. Direct

uncertainty estimation based on subjective likelihood metrics (e.g., GLUE, Beven and Binley 1992) is statistically
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unjustified (Mantovan and Todini 2006, Stedinger et al. 2008). Nevertheless, by using a subjective sample of models to
constrain sensitivity (Fig. 5), we can perform classical Bayesian inference (Eq. 2) to sample the relationship between an
unknown outcome (e.g., the streamflow response to fire) and an observational constraint (e.g., bias stationarity). This
framework overcomes the statistical limitations of process-based models by treating the results from equifinal parameter sets
as independent data points that constrain a statistical metamodel (Eqg. 2), which should be transferable to other disturbance
studies. Moreover, the statistical metamodel provides an 82% uncertainty reduction compared to the raw DHSVM ensemble
with just four years of post-fire streamflow data in a single watershed. Further calibration tests in other watersheds could
inform a transferrable understanding of equifinality that might help constrain the post-fire streamflow response with fewer

years of post-fire data, and could even help constrain predictions for possible future disturbances before they happen.

Our findings suggest a generally applicable conceptual framework for hydrological model simulations of many types of
change beyond just environmental disturbance. In brief, it is important to ensure that our models are stationary with respect
to the variability they are used to investigate. For our present study of the streamflow response to a forest fire, the model
should have stationary bias across pre- and post-fire periods. For a study on climate warming effects, modelers could test the
stationarity of model biases in warmer or cooler years or locations. For a drought study, model bias stationarity could be
evaluated between wet and dry periods. Many analogous examples are easily imagined. We anticipate that testing bias

stationarity across different types of change can help reduce both equifinality and uncertainty, as shown here.

5 Conclusion

In light of our results from this test application, we offer some general recommendations for process-based simulations of
environmental disturbance in a hydrological context.

e Parameter uncertainty extends beyond the subsurface. We suggest calibrating or at least testing the sensitivity of

parameters controlling the partitioning of ET fluxes (e.g., overstory/understory transpiration, interception loss, soil

evaporation, etc.). Ideally, uncertainty in meteorological biases should also be propagated during calibration.

e Nonstationary error metrics (e.g., positive or negative bias shift) can indicate a failure to adequately represent
change. Rejecting parameter sets with a bias shift after disturbance (or with respect to some other change) can help

reduce equifinality and thus also reduce uncertainty in hydrological changes.

e Modelers should beware of “reward hacking” (i.e., overfitting) during calibration. In this study, selecting the
highest-NSE parameter sets would lead to a 79% underestimation of the streamflow response to disturbance relative
to the mean value of the conditional metamodel (analogous 58% underestimation using log NSE).
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e We caution against direct derivation of uncertainty ranges from subjective parameter ensembles, as this could lead
to unnecessarily high uncertainty with poor statistical justification (Fig. 5). Instead, model results can inform a
statistical metamodel conditioned on observation-based metrics related to stationarity (e.g., bias shift), enabling the
derivation of uncertainty from classical Bayesian inference (Eqg. 2). The statistical metamodel structure will
necessarily depend on the study objectives, but the principle is generally applicable to other models and types of
environmental change.

Data and Code Availability

All model inputs/outputs, model code, analysis scripts, processed data, and other materials needed to understand and
reproduce the results of this study will be archived on Zenodo after acceptance. In particular, the R script
“5_BayesianModeling.R” may be useful for anyone interested in adapting our hybrid Bayesian framework (Eq. 2) to other

projects.
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